6 | Momentum

IB Physics Content Guide

Big Ideas

- The total momentum of an isolated system is always constant •
- The force on an object when speeding up or slowing down can be affected by changing the time for the force •
- The impulse of a collision is equal to the change in momentum •

Content Objectives

6.1 – Conservation of Momentum

🛄 p. 92, 96-101

I can define and calculate momentum		
I can calculate "before" and "after" momentums for multiple objects		
I can use the conservation of momentum to solve for missing variables in linear collisions		
I can describe the process required for explosion, hit and bounce, and hit and stick scenarios		
I can describe the difference between elastic and non-elastic collisions		
I can describe how energy is not always conserved within a system		
I can calculate the amount of energy retained in a non-elastic collision		

🛄 p. 93-95

6.2 – Momentum and Impulse	🛄 k	o. 93	-95
I can describe the meaning of impulse and how it is related to momentum change			
I can use impulse and momentum to solve for an unknown in a collision problem			
I can conceptually describe how to decrease the force experienced in a collision			
I can determine the impulse of a collision from a force vs time graph			

6 | Momentum

	Variable Symbol	Unit
Momentum		
Mass		
Velocity		
Time		
Kinetic Energy		
Impulse	Impulse	

Shelving Guide

Data Booklet Equations: p = mv $F = \frac{\Delta p}{\Delta t}$ $E_K = \frac{p^2}{2m}$

Impulse = $F\Delta t = \Delta p$

Conservation of Energy Problems

Types of Collisions

Elastic	
Inelastic	

Calculating Impulse

Impulse-Momentum Equation

Collision Safety

Explain (using impulse, force, and time) how to decrease the force acting on an object undergoing a collision: