7.1 | Waves - Sound IB Physics Content Guide

Big Ideas

- Simple harmonic motion is a repeating relationship between an object's position, velocity, and acceleration
- Waves are formed and transferred by particles oscillating in a medium
- All waves have properties can be measured and mathematically related
- Instruments resonate at specific frequencies due to the number of standing waves that fit in the length of the system
- Waves can occupy the same space at the same space to create constructive or destructive interference

Content Objectives

🚇 p. 141-149 7.1.1 – Simple Harmonic Motion I can qualitatively describe the motion of an oscillating system I can relate the acceleration of an object in simple harmonic motion to its position I can graph the displacement, velocity, and acceleration vs time for simple harmonic motion I can interpret an SHM graph to describe the conditions at a specific point in an object's motion I can describe and relate the properties of period and frequency I can calculate period and frequency from a scenario I can qualitatively describe the energy changes that take place during an oscillation 🚇 p. 150-153 7.1.2 – Properties of Traveling Waves I can describe how waves carry energy through a medium I can compare the properties of transverse and longitudinal waves I can identify a wave example as transverse or longitudinal I can read a wave's amplitude, wavelength, period, and frequency from a graph I can label a graph with the location of a wave's crest/compression and trough/rarefaction I can describe the number of complete wavelengths represented in a picture I can use the wave speed equation to mathematically relate speed, wavelength, and frequency I can relate pitch and frequency for sound waves 🚇 p. 190-195 7.1.3 – Standing Waves and Sound I can describe the motion of a standing wave I can identify and label the node and antinodes on a standing wave diagram I can calculate the wavelength of a standing wave for different harmonics I can describe how harmonics make it possible for one system to resonate at different frequencies I can describe the end conditions and nodes/antinodes for open/closed pipes and vibrating strings I can relate length and wavelength for open/closed pipes and vibrating strings I can calculate the length of a pipe/string required to resonate a specific frequency

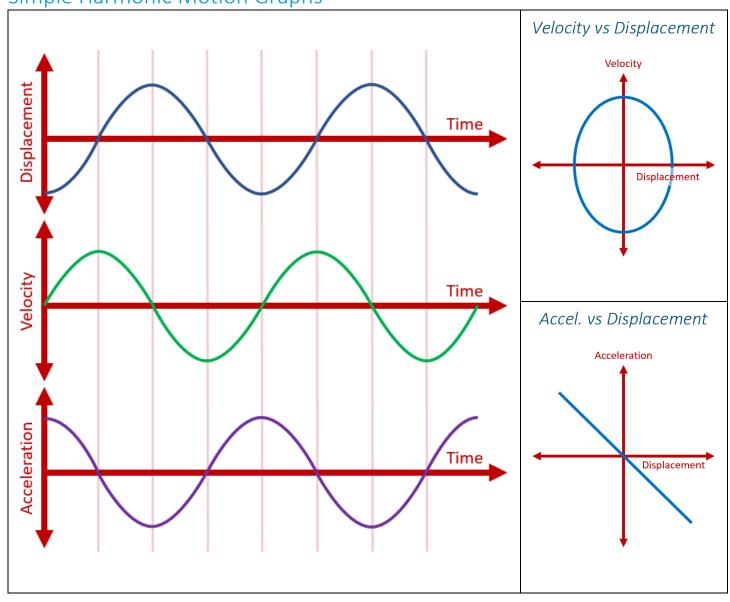
7.1.4 – Speed of Sound and Wave Interference

🛄 p. 157-158, 164, 184-186

I can describe why sound travels at different speeds in different media		
I can calculate how far a distant object is by timing an echo		
I can qualitatively and quantitatively interpret cases of constructive and destructive interference		
I can add up two waves with superposition to create a new waveform		
I can describe applications and real-world examples for wave interference		
I can use wavelength and source distance to identify maxima and minima for interference		

7.1 | Waves - Sound

Shelving Guide

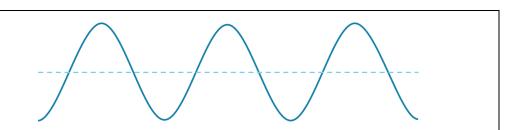

	Variable Symbol	Unit
Period	Т	S
Frequency	f	Hz
Wavelength	λ	m
Amplitude	А	m
Wave Speed	V	m s ⁻¹

Data Booklet Equations:

$$T = \frac{1}{f}$$

$$c = f\lambda$$

Simple Harmonic Motion Graphs



Types of Waves	Picture	Definition	Examples	
Transverse		Particles move perpendicular to the motion of the wave	LightRipples in a PondEarthquakes	
Longitudinal		Particles move parallel to the motion of the wave	SoundEarthquakes	

Parts of a Wave

Label the Wave:

- Amplitude
- Wavelength
- Crest
- Trough

Harmonics

Harmonics						
	Open	Pipe	Closed Pipe		String	
End Conditions	Antinode	Antinode	Node	Antinode	Node	Node
3 rd Harmonic						\searrow
	$L = \frac{3}{2}\lambda$	$\lambda = \frac{2}{3} L$	$L = \frac{5}{4} \lambda$	$\lambda = \frac{4}{5} L$	$L = \frac{3}{2}\lambda$	$\lambda = \frac{2}{3} L$
2 nd Harmonic						
	$L = 1 \lambda$	$\lambda = 1 L$	$L = \frac{3}{4}\lambda$	$\lambda = \frac{4}{3} L$	$L = 1 \lambda$	$\lambda = 1 L$
1 st Harmonic (Fundamental)						
	$L = \frac{1}{2}\lambda$	$\lambda = 2 L$	$L = \frac{1}{4}\lambda$	$\lambda = 4 L$	$L = \frac{1}{2}\lambda$	$\lambda = 2 L$

Interference

