Goal Practice solving velocity vector problems.

What To Do Answer the questions that follow

- **1.** A canoeist is paddling at 6.5 m/s[W], relative to the shore. If there is a current of 3.5 m/s[E], what is the canoeist's velocity relative to the current?
- **2.** A marble is rolling inside a toy wagon being pulled by a boy on the deck of a boat. The marble is rolling at 0.5 m/s[W] relative to the wagon. The wagon is being pulled at 1.5 m/s[W] relative to the surface of the boat, and the boat is moving at 4.5 m/s[S] relative to the water. The water is moving at 2.0 m/s[S] relative to the shore. What is the velocity of the marble relative to the shore?
- **3.** Car A is travelling south at 60 km/h, while directly behind it, car B is travelling north at 40 km/h. (a) Determine the velocity of B relative to A. (b) Determine the velocity of A relative to B.
- **4.** Relative to Earth's surface, a car is moving south at 80 km/h and a truck is moving west at 60 km/h. (a) Find the velocity of the car relative to the truck. (b) Find the velocity of the truck relative to the car.
- **5.** Einstein's equation for the addition of velocities applies to objects moving at slow speeds and at speeds near the speed of light. For example, if a spaceship moving at velocity v_A releases a missile with velocity v_B relative to the spaceship, then the velocity of the missile relative to an observer who is at rest is given by

$$v = \frac{v_{\rm A} + v_{\rm B}}{1 + \frac{v_{\rm A}v_{\rm B}}{c^2}} ,$$
where

where *c* is the speed of light.

Solve for v for the following cases: (a) $v_{\rm A} = 350$ m/s, $v_{\rm B} = 800$ m/s (b) $v_{\rm A} = 10$ km/s, and $v_{\rm B}$ is the speed of a laser, instead of a missile, and (c) $v_{\rm A} = c/2$, and $v_{\rm B}$ is the speed of a missile with speed c/2.